낵뢰에 대한 이해（1）

낙뢰는？

수억볼트（V）의 電氣이다！

초속10만Km로 이동하는 電氣 이다！

電氣 通信선，땅으로 흐르는 電氣 이다！

낙뢰에 대한 이해（2）

낙리는 대지아 니운 간 전하가 쌍방 이동하는 것

뇌운에서 가꺄운 대지의 물치에 뇌격이 가해진다 뇌운은 수k떼 크기로 주먹만한 피뢰침이 못 몰아난다 낙뢰는 피뢰침뿐만 아니라 나무나 건물에도 친다

낙뢰는？

뇌운과 땅간의 전하의 이동－電氣이다！

수억 볼트로 절연파교 거리가 크다！
電氣•通信•접지•Data，어디든 유도된다！

피뢰침에 대한 이해

피뢰침은 낙뢰전기를 땅에 흘리고，그 낙뢰전기는 접지－전기－통신선을 통해 장비를 파손시킨다

피뢰침은？

낙뢰電氣를 잡아 당겨서 맞는 것이다！

좋으면 좋을수록 낙뢰를 더 잘 맞교， 낙뢰電氣를 잘 맞으니 電氣피해 크다！

 낙뢰피해가 난 곳에는 모두 설치됐다！
접지에 대한 이해

피뢰침에 맞은 낙뢰전기를 접지로 흘리지만，
ㄱ 늑뢰전기는 접지 • 전기•통신선으로 유입된다

접지는？

낙뢰電氣의 放電路 이자 誘入路 이다！

저항 값보다 접지시스템이 중요하다！

저항 값이 작으면 작을수록 유도뢰의 유입이 더 잘되교 피해도 늘어난다！ 낙뢰피해가 큰 곳에는 접지저항 낮다！

낙뢰방호 방법 바로 알기

피뢰침: 뇌운에서 낙뢰를 잡아당긴다

낵뢰를 유도하여 사람교 구조물에 직접 맞지 않게 한다. 프랭클린이 연 실험을 했다면, 그날이 제삿날이 됐거나, 정말로 행운의 사나이 이거나, 에너지변환의 원조이다!

접지: 낙뢰 방전로, 유도뢰 유입로

 닉뢰전류의 방전로와 유도뢰의 유입경로 역할 한다. 상수도관의 접지저항은? 거기 붙은 유령계는? 비행기와 배, 자동차의 접지저항은?
SPD: 전원통신선로의 유입서지 차단

 전원 • 통신 선에 유입된 Surge전압을 차단한다. 접지 - 대지로 유입된 Surge전압은 차단 못 한다. 수도관 - 가스관 - 건물로 유입된 Surge는 못 막는다.
eca3G: 접지•SPD•낙뢰방호종합장치

등전위 시스템+공통접지 시스팀+Surge보호시스템 전기난로는 전기를 열에너지로 변환 시킨것이다. 전기용접기는 전기를 Arc열로 변환 시킨것이다. 갈릴례오, 아인슈타인.. 때가 되면누구나 알 것을~!

낙뢰방호 방법에 따른 문제점

피뢰침

줌을수록 전자장비는 더위험하다 전자장비호보에는 휠씬 불리하다 낙뢰유도침은 Surge의 근원이다 유도뢰는 절대로 막지 못 한다 성능이 좋으면 Surge 유입은 많다
ICLP에서는 비재래식 표뢰침의 교대팡교의 위험성을경교

SPD

Surge 전류가 접지로 방전이 되면서 접지로 역류하는 2차 피해가 있다
접지 - 대지의 유도뢰는 차단 못한다 SPD 가 있어도 피해가 발생한다

접지

줗으면 낙뢰방전이 유리 하지만, 반대로 유도뢰가 유입도 잘된다 성능이 좋으면 Surge 유입도 많다 등전위 공통접지시스템이 적합하다

에카

건축물이 깨지는 물리적 파손이나, 사람이 낙뢰 맞는 것은 방지 못한다

낙뢰방호의 대상에 따른 분석

피뢰침

인명, 문화재 , 건축물, 유류 저장고 전기를 사용하지 않는 것들을 물리적 타격으로부터 보호하는 대책이다

SPD

전기전자설비, 정보통신정보화설비, 계측제어설비, PLC, CCTV
전원•통신선으로 유입되는 Surge를 차단 한다 접지- 대지를 통한 유도뢰는 차단 할 수 없다 낙뢰피해 현장은 대부분 SPD가 설치돼 있다

접지

전원+통신+피뢰+계장+신호 접지 모든 접지가 공통으로 연결된다. 안전접지(인명보호), 기준전위 접지, 등전위용 본딩 접지, 피뢰침용 접지

에카

전기전자설비, 정보통신정보회설비, 계측제어설비, PLC, CCTV
전원-통신-접지선에 유입Surge를차단•제거한다 접지기능과 서지보호기기능을 동시에 하고, 공통접지시스템과 등전위시스템을 구축해 준다

낙뢰피해 발생원인(요소)별 대책

직격뢰

- 피해 유형과 피해발생 원인별 대책

문화재의 파손, 건축물의 파손, 나무가 부러짐, 탑이 깨지,, 유류탱크 폭발 피뢰침을 노격거리에 적합하게설치한다.
주변 한경을 고려하여 피뢰침을 설치한다.
불필요한곳: 다리 밑, 산밑, 고압선밑, 고층 건물 아래, 전기설비가 엾는 곳, 20 m 미만 시설교 정보통신설비(무선설비규칙 개성 중)

즉 직격뢰가 물리적 파손을 시키는 것들에 대한 넉뢰방호 대책은 피뢰침을 설치하여 해결을 한다.

- 피해 유형

유도뢰(Surge)

- 피해 유형과 피해발생 원인별 대책

전자장비 고장, 통싱장비 고장, 반도체 파소, 반도체오동작, 전자기적 고장
위와 같이 물리적인 패손이 아닌, 전자기적으로 고장이넌 것들은 모두 유도뢰에 의한 것이다.
위와 같이 직격뢰에 의한 피해가 아넌 것은 피뢰침으로는 절대 해결 할 수 없다.
유도뢰에 대한 대책은, 공통접지시스템과 등전위 시스템을 구축한다.
전원통신접지선으로 유입되는 낙뢰전류와 Surge를 차단제거 한다.

- 피해 유형

eca3G 구성장치의 동작 기능

eca3G의 내부 구성장치 구성

명칭	동작기능
전원이ㄱㅕㅕㅂ	전원공급분전반의 전원 2 자에 별렬로 연결을 한다
분석검출장치	유입되는 Surge를검출하는 기능을 한다
Surge 제거장치	Surge 전압을 Clamping 제거하는 기능을 한다
공통접지장치	공통접지방싱인TN-C방식을 구축해 준다
디지틀분석장지	닉뢰 유입히ㅅㅜㅜㅇㅘ 정상동자을 관리 하는 기느을 한다
Surge 방전장치	넉뢰 Surge를 방전시켜서 제거하는 기능을 한다
중성화장치	넉뢰 Surge의 전기적인 특성을 중성화 하는 장치이다
에너지변한장치	낵뢰 Surge를 열에니지변확과 Arc 변휜하는 장치이다
접지연결단자	접지선을 연결하고, 장비간 등전위를 이루게 한다 접지를 통하여 유입되는 유도뢰를 내부장치로 보낸다

eca3G의 유도뢰 대응 동작

eca3G 낙뢰전류 제거 대책

에너지변환장치 낙뢰전류 변환 성능

